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Abstract

In this paper we set-up a general framework for a formal deformation theory of Dirac structures. We give a parameterization of
formal deformations in terms of two-forms obeying a cubic equation. The notion of equivalence is discussed in detail. We show
that the obstruction for the construction of deformations order by order lies in the third Lie algebroid cohomology of the Dirac
structure. However, the classification of inequivalent first order deformations is not given by the second Lie algebroid cohomology
but turns out to be more complicated.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A Dirac structure is a maximally isotropic subbundle of a Courant algebroid whose sections in addition are closed
under the Courant bracket. A Courant algebroid is a vector bundle with a not necessarily positive definite fiber metric
over a base manifold which is equipped with a bundle map into the tangent bundle (the anchor) and a bracket on
its sections, the Courant bracket, subject to certain compatibility conditions. The fundamental example of a Courant
algebroid is E = T M ⊕ T ∗M with the natural pairing as fiber metric, the identity on the first component as anchor
and the bracket

[(X, α), (Y, β)]C = ([X, Y ],LXβ − iY dα).

Then both T M and T ∗M are Dirac structures in this Courant algebroid.
Dirac structures were introduced by Courant [7] to generalize on the one hand symplectic and Poisson structures,

and on the other to provide powerful tools to describe dynamics subject to constraints. Moreover, they can also be used
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to encode various ‘oid’-structures, in particular Lie bialgebroids [24–26]. For the general notions of Dirac structures
we refer to [7,24].

As Dirac structures combine symplectic and Poisson structures and can be used in constraint dynamics, it is natural
to ask what a physically reasonable quantization of a Dirac structure should be. In particular, this could shine some
new light on the quantization of constraint dynamics and phase space reduction. In deformation quantization [1], see
e.g. [10,16,35] for recent reviews, one knows that the equivalence classes of formal quantizations of Poisson structures
are in one-to-one correspondence with equivalence classes of formal deformations of the given Poisson structure
into formal Poisson structures modulo formal diffeomorphisms. This is one of the main corollaries of Kontsevich’s
formality theorem [18].

Motivated by this result, we investigate the deformation theory of Dirac structures in order to determine their
classical deformations into formal Dirac structures up to formal diffeomorphisms. We hope that this will give
eventually some hints on how to formulate a definition of deformation quantization of Dirac structures such that a
type of formality might hold true also in this context. The first steps in this direction have been taken in [32] by Ševera
who proposed a deformation quantization of formal deformations of regular Dirac structures. Note however, that the
classical deformations are also of interest if one wants to describe stability/rigidity of Dirac structures, not necessarily
aiming at quantization. Thus our first aim in this paper is to set-up a reasonable definition of a formal Dirac structure
and investigate basic properties of the corresponding classical deformation theory.

As a Dirac structure L gives in particular the structure of a Lie algebroid it is natural to compare the formal
deformation theory of Dirac structures with the formal deformation theory of L as a Lie algebroid in the sense of [9]:
It turns out that any deformation of a Dirac structure induces a Lie algebroid deformation, but not necessarily vice-
versa. Moreover, in [9] it was shown that the Lie algebroid structure of T M is rigid with respect to formal deformations
while it is easy to see that this is not the case for Dirac structure deformations, here any non-trivial pre-symplectic
form provides a non-trivial deformation.

The main results of this paper are, on the one hand, that the obstruction space for formal order-by-order
deformations of a Dirac structure L is given by the third Lie algebroid cohomology of L; on the other, and this is
the more surprising result, that the reasonable notion of equivalence up to formal diffeomorphisms does not yield a
classification of inequivalent first order deformations in the second Lie algebroid cohomology, as one might first think:
the actual classification is more involved and seems to be beyond a simple cohomological formulation. This depends
of course on our definition of equivalence which we based on formal diffeomorphisms. Most of our results emerged
from the Diplomarbeit [17].

As a main technique it turned out that a description of formal Dirac structures in terms of graphs of formal two-
forms requires some reasonable calculus. We found the derived bracket formalism [19,20], already introduced by
Roytenberg in a super-geometric way [29], most useful. However, we realized the derived bracket formalism not in
terms of super-geometry but used more conventional geometric objects: the main ingredient is the Rothstein–Poisson
bracket [28]. We believe that this approach has its own interest, in particular when it comes to quantization as we can
rely on Bordemann’s results for the deformation quantization of the Rothstein–Poisson bracket [2,3]. Nevertheless,
our approach is completely equivalent to the one of Roytenberg.

The paper is organized as follows: In Section 2 we recall some basic definitions and results on Courant algebroids,
their automorphisms and their Dirac structures. Section 3 introduces the derived bracket point of view in order
to handle the quite complicated algebraic identities of the Courant bracket in a more efficient way. We recall the
Rothstein–Poisson bracket and use it to formulate Dirac structures in this context. In Section 4 we first formulate a
smooth deformation of a Dirac structure and discuss the problem of equivalence up to diffeomorphisms for the case
of a general Courant algebroid. Taking this as motivation we pass to formal deformations by Taylor expansion in
the deformation parameter as usual. The fundamental equation, a sort of Maurer–Cartan equation which controls the
deformation, has already been discussed in some different contexts in [31, Eq. (4.3)]. We show that the order-by-order
construction of a formal deformation yields obstructions in the third Lie algebroid cohomology of the undeformed
Dirac structure. Finally, we discuss the notion of equivalence up to formal diffeomorphisms in detail and point out
that the second Lie algebroid cohomology is not necessarily the space of inequivalent first order deformations. Finally,
Appendix A gives an overview on the Rothstein–Poisson bracket and recalls some of its basic properties.

Conventions: Throughout the paper we use Einstein’s summation convention, i.e. summation over repeated
coordinate indices is automatic.
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2. General remarks on Dirac structures in Courant algebroids

In this section we recall some basic notions of Courant algebroids and Dirac structures in order to set up our
notation. Most of the material is standard, see e.g. [7,24,29].

2.1. Courant algebroids

Definition 2.1. A Courant algebroid is a vector bundle E −→ M together with a nondegenerate symmetric bilinear
form h, a bracket [ ·, · ]C : Γ∞(E) × Γ∞(E) −→ Γ∞(E) on the sections of the bundle and a vector bundle
homomorphism ρ : E −→ T M , called the anchor, such that for all e1, e2, e3 ∈ Γ∞(E) and f ∈ C∞(M) the
following conditions hold:

(i) Jacobi identity, i.e. [e1, [e2, e3]C]C = [[e1, e2]C, e3]C + [e2, [e1, e3]C]C,
(ii) [e1, e2]C + [e2, e1]C = D h(e1, e2), where D : C∞(M) −→ Γ∞(E) is defined by

h(D f, e) = ρ(e) f,

(iii) ρ(e1)h(e2, e3) = h([e1, e2]C, e3)+ h(e2, [e1, e3]C).

An easy computation shows that the Courant bracket [·, ·]C satisfies the Leibniz rule

[e1, f e2]C = f [e1, e2]C + (ρ(e1) f )e2 (2.1)

and the anchor turns out to satisfy

ρ([e1, e2]C) = [ρ(e1), ρ(e2)] (2.2)

for all e1, e2, e3 ∈ Γ∞(E) and f ∈ C∞(M), see e.g. [21,22,34].

Remark 2.2. Equivalent to this definition is the one given in [6]. One can also consider the object obtained by skew-
symmetrization of the Courant bracket, which is sometimes referred to as a Courant algebroid. Both definitions are
equivalent, see [29] for a detailed discussion.

The above definition for a Courant algebroid is the generalization of an object studied by Courant in [7], which we
will refer as the standard Courant algebroid:

Example 2.3 (Standard Courant Algebroid [7]). Consider for a manifold M the vector bundle E = T M ⊕ T ∗M . The
canonical symmetric bilinear form on E given by

〈(X, α), (Y, β)〉 = α(Y )+ β(X), (2.3)

where X, Y ∈ X(M) and α, β ∈ Ω1(M), together with the bracket

[(X, α), (Y, β)]C = ([X, Y ],LXβ − iY dα) (2.4)

and the anchor ρ defined by ρ(X, α) = X endows E with the structure of a Courant algebroid.

Remark 2.4. According to our definition of a Courant algebroid we use here also the non skew-symmetric version
where originally in [7] the skew-symmetric bracket was used.

Other examples for Courant algebroids are given by the double of Lie bialgebroids [24], or more generally by the
doubles of Lie quasi-bialgebroids or proto bialgebroids, see [21]. We will come back to these examples later.

2.2. Automorphisms of Courant algebroids

Crucial for our investigations of deformations of Dirac structures will be an appropriate notion of isomorphism.
To this end we need the automorphisms of the Courant algebroid. If E −→ M is a Courant algebroid, then a vector
bundle automorphism Φ : E −→ E over a diffeomorphism φ : M −→ M is called an automorphism of the Courant
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algebroid, if the following two conditions are fulfilled: First, Φ is an isometry of the bilinear form h, i.e. for all
e1, e2 ∈ Γ∞(E)

h(Φ∗e1,Φ∗e2) = φ∗(h(e1, e2)). (2.5)

Second, Φ is natural with respect to the Courant bracket, i.e. for all e1, e2 ∈ Γ∞(E)

[Φ∗e1,Φ∗e2]C = Φ∗
[e1, e2]C. (2.6)

The following lemma shows that the compatibility with the anchor is already fixed by these two conditions:

Lemma 2.5. If Φ : E −→ E is a Courant algebroid automorphism then the anchor ρ satisfies

ρ ◦ Φ = Tφ ◦ ρ. (2.7)

Proof. This is used implicitly in [15, Prop. 3.24]: Using (2.1) and then (2.6) gives [Φ∗e1,Φ∗( f e2)]C =

Φ∗( f [e1, e2]C) + ρ(Φ∗e1)(φ
∗ f )Φ∗e2. The other way round gives [Φ∗e1,Φ∗( f e2)]C = Φ∗( f [e1, e2]) +

φ∗(ρ(e1) f )Φ∗e2 whence we obtain

ρ(Φ∗e1)(φ
∗ f ) = φ∗(ρ(e1) f ) = φ∗(ρ(e1))(φ

∗ f )

for all e1, e2 ∈ Γ∞(E) and f ∈ C∞(M), which implies (2.7). �

In the case of the standard Courant algebroid one can determine the group of automorphisms completely. We recall
the following definition [33]:

Definition 2.6 (Gauge Transformations). Let E = T M ⊕ T ∗M be the standard Courant algebroid and B ∈ Ω2(M) a
two-form. A gauge transformation is a map τB : T M ⊕ T ∗M −→ T M ⊕ T ∗M given by τB(X, α) = (X, α + iX B).

Lemma 2.7 (Ševera, Weinstein [33]). A gauge transformation τB is an automorphism of the standard Courant
algebroid structure on T M ⊕ T ∗M if and only if B is closed.

Let φ be a diffeomorphism of M . Then we denote the canonical lift of φ to T M ⊕ T ∗M by Fφ = (Tφ, T∗φ),
where T∗φ : T ∗M −→ T ∗M is given by T∗φ(αp) = (Tφ−1)∗αp = αp ◦ Tφ(p)φ−1 for αp ∈ T ∗

p M . We further write
Bφ for the inverse of Fφ. With this notation, the following proposition describes all automorphisms of the standard
Courant algebroid, see [15, Prop. 3.24]:

Proposition 2.8. Let E = T M ⊕ T ∗M be the standard Courant algebroid. Then every automorphism Φ of E is of
the form

Φ = τB ◦ Fφ, (2.8)

with a unique closed 2-form B ∈ Ω2(M) and an unique diffeomorphism φ : M −→ M. The automorphism group
of T M ⊕ T ∗M is given by the semi-direct product Z2(M)o Diff (M) with Z2(M) = ker(d|Ω2(M)), where the group
multiplication is

(B, φ)(C, ψ) = (B + (φ−1)∗C, φ ◦ ψ). (2.9)

2.3. Dirac structures

The definition of Dirac structures on manifolds is due to Courant [7] and was later generalized to Courant algebroids
in [24]:

Definition 2.9. Let E be a Courant algebroid. A subbundle L ⊂ E is called a Dirac structure if L is
maximally isotropic with respect to the given bilinear form and if Γ∞(L) is closed under the Courant bracket,
i.e. [Γ∞(L),Γ∞(L)] ⊆ Γ∞(L).
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In the following, whenever we speak about Courant algebroids with Dirac structures, we will restrict ourself to Courant
algebroids with even fiber dimension and a bilinear form of signature zero. The reason for this is that maximal
isotropic subbundles in such Courant algebroids have half the fiber dimension of the algebroid, a point that will
become important later on.

In particular, the standard Courant algebroid T M ⊕ T ∗M is of this type. In this case, one has the following two
standard examples of Dirac structures:

Example 2.10. Let E = T M ⊕ T ∗M be the standard Courant algebroid over M .

(i) Given a two-form ω ∈ Ω2(M), we consider ω as a map ω : T M −→ T ∗M by defining

ω(X) = iXω = ω(X, · ). (2.10)

Thanks to skew-symmetry of ω the dim M-dimensional subbundle L := graph(ω) ⊂ T M ⊕ T ∗M is isotropic.
Moreover L is closed under the Courant bracket, i.e. is a Dirac structure, if and only if ω is closed. Thus
presymplectic two-forms can be viewed as particular cases of Dirac structures.

(ii) Let π ∈ Γ∞(
∧2 T M) be a bivector. We consider π as a map π : T ∗M −→ T M by defining

π(α) = π(α, · ). (2.11)

Again due to skew-symmetry L := graph(π) ⊂ T M ⊕ T ∗M is a maximal isotropic subbundle. One further finds
that L is a Dirac structure if and only if π is a Poisson tensor, i.e. [π, π] = 0.

3. Derived brackets for Courant algebroids and Dirac structures

In this section we shall realize the Courant bracket as a derived bracket in the sense of [19,20] as this has been done
before by Roytenberg [29,30] in a slightly different context.

3.1. The Rothstein–Poisson bracket

For the study of Poisson manifolds the Schouten–Nijenhuis bracket has turned out to be a very useful tool since
one can write the Poisson bracket as a derived bracket { f, g} = −[[ f, π], g] for a unique bivector π ∈ Γ∞(

∧2 T M).
It then follows immediately that the Jacobi identity for the Poisson bracket is equivalent to the equation [π, π] = 0,
see e.g. [20] for an overview on derived brackets. In the case of a Courant algebroid E a similar approach is possible.
However, one first has to find an appropriate space which has the sections Γ∞(E) as a subset as well as a bracket on
it, in order to write the Courant bracket as a derived bracket. One possibility favored by Roytenberg [29,30] is given
by the space of functions on a suitable symplectic supermanifold.

We shall use a slightly different presentation avoiding the explicit notion of supermanifolds: in our approach
we take advantage of more conventional differential geometry by using the Rothstein–Poisson bracket [28] on the
sections of the Grassmann algebra of the pullback bundle τ # E −→ T ∗M , see Appendix A for precise definitions.
The Rothstein–Poisson bracket satisfies a graded Leibniz rule with respect to the ∧-product, is graded antisymmetric
and fulfilles a graded Jacobi identity where all signs come from the Grassmann parity. Though the structure is
essentially the same as in [29,30], which can made even more transparent in the super-Darboux coordinates from
Appendix A.3, the explicit use of ordinary differential geometry might come in useful when considering a quantized
version of Dirac structures as we can rely on e.g. Bordemann’s construction [2,3] for deformation quantization of the
Rothstein–Poisson bracket. Furthermore, the usage of the Rothstein–Poisson bracket allows us to perform intrinsically
global computations.

Let E −→ M be a vector bundle together with a fiber metric h, i.e. a nondegenerate bilinear form, and let ∇ be
a metric connection on E . We denote by τ : T ∗M −→ M the cotangent bundle. Then on the supercommutative
algebra Γ∞

(∧
•
τ # E

)
of sections of the pulled back bundle τ # E −→ T ∗M we have the Rothstein–Poisson bracket

as described in Appendix A.2, defined by use of the pull back of the fiber metric h and the connection ∇. We can
regard Γ∞

(∧
• E
)

as a subalgebra of Γ∞
(∧

•
τ # E

)
via the pull-back of sections.

Since T ∗M is a vector bundle itself and since we consider a pulled back bundle over T ∗M , it makes sense to
speak of sections e ∈ Γ∞

(∧
•
τ # E

)
which are polynomial in the fiber directions of T ∗M of degree k ∈ N. Note

that the grading with respect to the fiber variables (the momenta) is not a good grading for the Rothstein–Poisson
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bracket, neither is the Grassmann degree. However, the Rothstein–Poisson bracket is graded with respect to twice the
polynomial degree in the momenta plus the Grassmann degree. We denote homogeneous sections of this total degree
k ∈ N by Pk

⊆ Γ∞
(∧

•
τ # E

)
. Then their direct sum P• is a subalgebra of Γ∞

(∧
•
τ # E

)
, both with respect to the

∧-product and the Rothstein bracket. With respect to this grading, the Rothstein–Poisson bracket has degree −2, i.e.

{Pk,P`}R ⊆ Pk+`−2. (3.1)

In particular, τ ∗C∞(M) = P0 and τ #Γ∞(E) = P1, see Appendix A.4.

3.2. Courant algebroids via Rothstein bracket

With the help of the Rothstein–Poisson bracket on Γ∞
(∧

•
τ # E

)
we can define a derived bracket [19] on Γ∞(E).

Consider for Θ ∈ Γ∞
(∧

•
τ # E

)
the bilinear map on Γ∞

(∧
•
τ # E

)
given by

(ξ, ζ ) 7−→ {{ξ,Θ}R , ζ }R . (3.2)

In order to get a derived bracket on Γ∞(E), the subspace P1
= Γ∞(E) has to be closed under the above map. As one

can see in the local formula (A.12) for the Rothstein–Poisson bracket this is only the case for a homogeneous Θ ∈ P3

of total degree 3. In fact, the lower degrees do not contribute and higher ones will not produce pullbacks of sections
from Γ∞(E). Such a section Θ ∈ P3 has two types of contributions: one is a section of Γ∞(τ # E) which is linear in
the momenta variables of T ∗M , the other is a pull-back section of Γ∞(

∧3 E).

Lemma 3.1. Let Θ ∈ P3. Then the following objects are well-defined:

(i) AR-bilinear derived bracket [ ·, · ]Θ : Γ∞(E)× Γ∞(E) −→ Γ∞(E) defined for e1, e2 ∈ Γ∞(E) by

[e1, e2]Θ = {{e1,Θ}R , e2}R . (3.3)

(ii) A derived anchor, i.e. a bundle map ρΘ : E −→ T M defined for e ∈ Γ∞(E) and f ∈ C∞(M) by

ρΘ (e) f = {{e,Θ}R , f }R . (3.4)

(iii) A map DΘ : C∞(M) −→ Γ∞(E) defined for f ∈ C∞(M) by

DΘ f = {Θ, f }R . (3.5)

The bundle E together with the bilinear form h and the above defined bracket and anchor satisfy the
conditions (ii) and (iii) from Definition 2.1 of a Courant algebroid.

Proof. The well-definedness follows from the grading properties. Then the verification of the conditions (ii) and (iii)
is a straightforward computation using the graded Jacobi identity of {·, ·}R . �

Note that the definition of DΘ is consistent with Definition 2.1. The following lemma is the analogue of [30] for the
Rothstein–Poisson bracket and follows the general ideas of derived brackets [20].

Lemma 3.2. Let Θ ∈ P3
⊂ Γ∞

(∧
•
(τ # E)

)
be homogeneous of degree 3. Then E together with the bilinear form h,

the bracket [ ·, · ]Θ and the anchor ρΘ is a Courant algebroid if and only if

{Θ,Θ}R = 0. (3.6)

Proof. For the ‘if’ part we only have to check the Jacobi identity for [·, ·], which is a simple computation in the
framework of derived brackets [19]. We only have to use the graded Jacobi identity of {·, ·}R . For the ‘only if’ part we
assume the Jacobi identity for [ ·, · ]Θ . Then

{{{{Θ,Θ}R , e1}R , e2}R , e3}R = 0 (∗)

for all e1, e2, e3 ∈ Γ∞(E). Let f ∈ C∞(M) be a function. Then by the graded Leibniz rule for {·, ·}R we have

0 = {{{{Θ,Θ}R , e1}R , e2}R , f e3}R

= f {{{{Θ,Θ}R , e1}R , e2}R , e3}R + {{{{Θ,Θ}R , e1}R , e2}R , f }Re3
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from which we obtain

{{{{Θ,Θ}R , e1}R , e2}R , f }R = 0. (∗∗)

By another application of the graded Jacobi identity we also find

{{{Θ,Θ}R , {e1, e2}R}R , f }R = 0

for all e1, e2 ∈ Γ∞(E) and f ∈ C∞(M). Since locally every function g ∈ C∞(M) can be written as g = {e1, e2}R
with appropriate e1, e2 ∈ Γ∞(E) we conclude

{{{Θ,Θ}R , f }R , g}R = 0 (∗ ∗ ∗)

for all f, g ∈ C∞(M). From the explicit formulas for {·, ·}R we see that the properties (∗), (∗∗) and (∗ ∗ ∗) together
imply that the homogeneous element {Θ,Θ}R of degree 4 has to vanish. �

In a next step we want to construct such an element Θ for a given Courant algebroid. We begin with the following
easy lemma:

Lemma 3.3. Let (E, [ ·, · ]C, ρ, h) be a Courant algebroid with a metric connection ∇. Then the map T : Γ∞(E) ×

Γ∞(E)× Γ∞(E) −→ R defined by

T (e1, e2, e3) = h(∇ρ(e1)e2 − ∇ρ(e2)e1 − [e1, e2]C, e3)+ h(∇ρ(e3)e1, e2) (3.7)

is a skew-symmetric 3-tensor T ∈ Γ∞(
∧3 E∗).

Proof. The proof is a direct computation using the definition of a Courant algebroid and the fact that the connection
is metric. �

In some sense, T is the Courant algebroid version of the torsion of ∇. Let u1, . . . , uK be a local basis of sections
of E with dual basis u1, . . . , uK , defined on the domain of a local chart x1, . . . , xn of M . Then locally T is given by

T =
1
6

TABC u A
∧ u B

∧ uC (3.8)

where TABC = T (u A, u B, uC ). Using the musical isomorphism ] induced by the fiber metric h we obtain from
T ∈ Γ∞(

∧3 E∗) the tensor field T ] ∈ Γ∞(
∧3 E), locally given by

T ] =
1
6

h AE hB F hCG TABC uE ∧ uF ∧ uG . (3.9)

Using the structure functions CC
AB = 〈[u A, u B]C, uC

〉 of the Courant bracket, the components ρi
= dx i

◦ ρ of the
anchor, and the Christoffel symbols Γ A

i B of ∇ we obtain by a straightforward computation

T ] =
1
2

h ADhB Eρi (u A)ΓC
i BuC ∧ u D ∧ uE −

1
6

h ADhB E CC
ABuC ∧ u D ∧ uE . (3.10)

The second tensor field we shall need is obtained as follows. Since the anchor can be viewed as ρ ∈ Γ∞(E∗
⊗ T M)

we can use h to obtain a tensor field ρ] ∈ Γ∞(E ⊗ T M). In a second step we can view the tangent vector field part of
ρ] as a linear function on T ∗M whence we end up with a section J(ρ]) ∈ Γ∞(τ # E), polynomial in the momenta of
degree 1. Here, J : Γ∞(S•T M) −→ P•(T ∗M) denotes the canonical algebra isomorphism. Locally, J(ρ]) is given
by

J(ρ]) = h AC piρ
i (u A)uC , (3.11)

where p1, . . . , pn are the canonically conjugate momenta on T ∗M to the local coordinates q1
= τ ∗x1, . . . , qn

= τ ∗xn

induced by the local coordinates x1, . . . , xn on M .
Putting both together we obtain from the choice of a metric connection ∇ the homogeneous element

Θ = −J(ρ])+ T ] ∈ P3
⊆ Γ∞

(
τ #
∧

•
E
)

(3.12)
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of total degree 3. For later use we shall give yet another local expression for Θ , namely using the super-Darboux
coordinates from Proposition A.4. By rearranging the local expressions for J(ρ]) and T ] we obtain

Θ = −h ACriρ
i (u A)uC −

1
6

h ADhB E CC
ABuC ∧ u D ∧ uE . (3.13)

The advantage will be the easy commutation relations between the ri and the other local variables. It is also the direct
analogue to the supergeometric formulation of Roytenberg, see [30, Eq. (4.7)]. Note however, that this splitting of Θ
is not coordinate independent, i.e. the two parts are not tensor fields, contrary to the splitting (3.12).

Lemma 3.4. Let E −→ M be a Courant algebroid and chose a metric connection ∇. Define the element Θ ∈ P3

by (3.12). Then the Courant bracket and the anchor of E coincide with the derived bracket and the derived anchor
induced by the element Θ ∈ P3. In particular, {Θ,Θ}R = 0.

Proof. Using the super-Darboux coordinates this is a simple verification. The second statement follows directly from
Lemma 3.2. �

Now we can finally make contact to the supermanifold formulation of Roytenberg. Analogously to [30, Thm. 4.5]
we obtain:

Theorem 3.5. Let E −→ M be a vector bundle with fiber metric h and metric connection ∇. Then the set of Courant
algebroid structures on E is in one-to-one correspondence with the set of Θ ∈ P3 such that {Θ,Θ}R = 0.

3.3. The case E = L ⊕ L∗

Consider the case E = L ⊕ L∗ for a vector bundle L endowed with the natural pairing as fiber metric of signature
zero. In the following we shall use a connection on L and the corresponding induced metric connection on L ⊕ L∗.
From this choice we obtain the Rothstein–Poisson bracket on Γ∞

(∧
•
τ #(L ⊕ L∗)

)
, see also Appendix A.5. The

splitting E = L⊕L∗ induces a bigrading instead of our previous total degree: Indeed, we set degL to be the polynomial
degree in the momenta plus the L-degree and degL∗ is the polynomial degree in the momenta plus the L∗-degree. Then
P(r,s) denotes those elements in Pr+s of degL -degree r and degL∗ -degree s. Using this direct sum decomposition one
obtains the following, analogously to [31]:

Lemma 3.6. Let Θ = ψ + µ + γ + φ ∈ P be an element of total degree 3 with ψ ∈ P(0,3), µ ∈ P(1,2), γ ∈ P(2,1)

and φ ∈ P(3,0). Then {Θ,Θ}R = 0 is equivalent to

{µ,ψ}R = 0 (3.14)

1
2
{µ,µ}R + {γ,ψ}R = 0 (3.15)

{φ,ψ}R + {µ, γ }R = 0 (3.16)

1
2
{γ, γ }R + {µ, φ}R = 0 (3.17)

{γ, φ}R = 0. (3.18)

A quasi-Lie algebroid is a vector bundle A −→ M together with a R-bilinear, skew symmetric bracket [ ·, · ]A on
Γ∞(A) and a vector bundle homomorphism ρA : A −→ T M such that for all a1, a2 ∈ Γ∞(A) and f ∈ C∞(M) the
Leibniz rule

[a1, f a2]A = f [a1, a2]A + ρA(a1) f a2 (3.19)

is satisfied. If in addition the Jacobi identity for the bracket [ ·, · ]A is fulfilled, then A is a Lie algebroid. In this case
the anchor ρA is a homomorphism of Lie algebras,

ρA([a1, a2]A) = [ρA(a1), ρA(a2)]. (3.20)
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The construction of the Schouten–Nijenhuis bracket can be generalized to the quasi-Lie algebroid case by imposing
the graded Leibniz rule. The graded skew-symmetry and Leibniz rule are still satisfied, the graded Jacobi identity
holds if and only if A is a Lie algebroid. The Lie algebroid differential also generalizes to the quasi-Lie algebroid
case, and we get a differential with square zero if and only if A is a Lie algebroid. Conversely the quasi-Lie algebroid
structure can be retrieved from the Schouten–Nijenhuis bracket or from the differential, see e.g. [27]. Identifying our
derived brackets in this situation gives the following explicit formulas:

Lemma 3.7. Let Θ = ψ + µ + γ + φ ∈ P ⊂ Γ∞
(∧

•
τ #(L ⊕ L∗)

)
be as above, and let [ ·, · ]Θ and ρΘ be the

derived bracket and anchor.

(i) The restriction of [ ·, · ]Θ to L with subsequent projection to L is given by the derived bracket with respect to µ,
i.e. for all s1, s2 ∈ Γ∞(L) we have

prL([s1, s2]Θ ) = [s1, s2]µ = {{s1, µ}R , s2}R . (3.21)

Further, the restriction of the anchor to L is given by

ρΘ (s) f = ρµ(s) f = {{s, µ}R , f }R (3.22)

for s ∈ Γ∞(L) and f ∈ C∞(M).

(ii) The bracket [ ·, · ]µ together with the anchor ρµ make L a quasi Lie-algebroid. The associated
Schouten–Nijenhuis bracket is given by

[P, Q]µ = {{P, µ}R , Q}R (3.23)

for P, Q ∈ Γ∞(
∧

• L), and the Lie algebroid differential by

dLη = {µ, η}R , (3.24)

where η ∈ Γ∞(
∧

• L∗).

(iii) Analogous results are obtained for L∗ by replacing µ with γ .

Proof. Let s1, s2 ∈ P(1,0) = Γ∞(L). Using the bigrading properties we get

[s1, s2]Θ = {{s1,Θ}R , s2}R = {{s1, ψ}R , s2}R + {{s1, µ}R , s2}R

with {{s1, ψ}R , s2}R ∈ P(0,1) = Γ∞(L∗) and {{s1, µ}R , s2}R ∈ P(1,0) = Γ∞(L). Thus prL([s1, s2]Θ ) = [s1, s2]µ =

{{s1, µ}R , s2}R . Analogously, we obtain (3.22). A standard computation finally shows that the extension of [·, ·]µ to
multivector fields is given by (3.23) since (3.23) satisfies the same type of graded Leibniz rule and coincides with the
Schouten–Nijenhuis bracket on the local generators. As one can see by counting degrees we have a well-defined map
{µ, · }R : Γ∞(

∧k L∗) −→ Γ∞(
∧k+1 L∗). Thanks to the graded Leibniz rule for the Rothstein–Poisson bracket,

this map is a graded derivation of the ∧-product. A straightforward computation then shows that is{µ, f }R = isdL f
and is2 is1{µ, α}R = is2 is1 dLα for all s, s1, s2 ∈ Γ∞(L), f ∈ C∞(M) and α ∈ Γ∞(L∗). By the derivation property,
{µ, ·}R coincides with dL on the whole space Γ∞(

∧
• L∗). The last statement follows analogously. �

Recall that a Lie quasi-bialgebroid is a Lie algebroid (A, [ ·, · ]A, ρA) together with a graded derivation dA∗ of
degree one of Γ∞

(∧
• A
)

with respect to both the ∧-product and the Schouten–Nijenhuis bracket, and a 3-vector

φ ∈ Γ∞(
∧3 A) such that dA∗φ = 0 and d2

A∗ = −[φ, ·]A, see e.g. [23]. It is well-known that a graded derivation
of degree one of Γ∞

(∧
• A
)

defines a Schouten–Nijenhuis bracket on Γ∞
(∧

• A∗
)
. Thus a Lie quasi-bialgebroid is

a pair (A, A∗), where A is a Lie algebroid and A∗ is a quasi-Lie algebroid, such that the differential dA∗ of A∗ is a
graded derivation of the Schouten–Nijenhuis bracket on A and d2

A∗ = −[φ, ·]A for some 3-vector φ ∈ Γ∞(
∧3 A)

with dA∗φ = 0, see e.g. [31]. A Lie bialgebroid [26] is obtained in the case that d2
A∗ = 0. Combining Lemmas 3.6 and

3.7 we obtain the following well-known result [29]:

Lemma 3.8. Let Θ = ψ +µ+ γ + φ ∈ P ⊂ Γ∞
(∧

•
τ #(L ⊕ L∗)

)
be as in Lemma 3.7 and assume now in addition

{Θ,Θ}R = 0. If ψ = 0 then L is a Lie quasi-bialgebroid. If φ = 0 then L∗ is a Lie quasi-bialgebroid.
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3.4. Courant algebroids with Dirac structures

We shall now consider the case of a Courant algebroid E = L ⊕ L∗ over M such that L is a Dirac structure. As we
will see later in Corollary 4.4 a Courant algebroid E with a Dirac structure L is always of this form.

The element Θ from Theorem 3.5 now is given as a sum Θ = ψ + µ + γ + φ according to the bigrading. We
split the tensor field T from Lemma 3.3 and T ], respectively, into their L and L∗ components. Note also that we can
identify T and T ] canonically, since L ⊕ L∗ is canonically ‘self-dual’. As before we set ρi

= dx i
◦ ρ and define

ri ∈ Γ∞(
∧

•
τ ](L ⊕ L∗)) for i = 1, . . . , n by ri = pi − Γ β

iαaα ∧ aβ , see Proposition A.11. Analogously, the anchor
ρ splits into the two restrictions ρL and ρL∗ to L and L∗, respectively. Then we have locally

J(ρ
]
L) = piρ

i (aα)a
α and J(ρ

]
L∗) = piρ

i (aα)aα. (3.25)

The above splitting of T and ρ into the components according to E = L ⊕ L∗ now gives the splitting of Θ into the
elements µ, γ , and φ. To identify these components, we define the global tensor fields

µ = −J(ρ
]
L)+ T |∧2 L⊗L∗ (3.26)

γ = −J(ρ
]
L∗)+ T |L⊗

∧2 L∗ (3.27)

φ = T |∧3 L∗ . (3.28)

Because L is a Dirac structure one has T |∧3 L = 0 and therefore

Θ = µ+ γ + φ. (3.29)

A little computation shows that T |∧2 L⊗L∗ is three times the torsion [8] for the Lie algebroid L and analogously
T |L⊗

∧2 L∗ is three times the torsion for the quasi Lie algebroid L∗. We further have

φ(σ1, σ2, σ3) = −〈[σ1, σ2]C, σ3〉 (3.30)

for σ1, σ2, σ3 ∈ P(0,1) = Γ∞(L∗).
Let us look now at the local expressions. Let x1, . . . , xn be coordinates on M , a1, . . . , ak a local basis of sections

of L and a1, . . . , ak the dual local basis of sections of L∗. We define local functions

cγαβ = 〈[aα, aβ ]C, aγ 〉 and cαβγ = 〈[aα, aβ ]C, aγ 〉. (3.31)

Furthermore, we have

φ =
1
6
φαβγ aα ∧ aβ ∧ aγ with φαβγ = −(〈[aα, aβ ]C, aγ 〉). (3.32)

Since we assume L to be a Dirac structure, all other combinations of structure functions as in Section 3.2 are either
zero, or can be computed from the ones in (3.31) and (3.32) by using the properties of the Courant bracket [·, ·]C.

Let q1, . . . , qn, p1, . . . , pn be the induced coordinates on T ∗M and let Γ α
iβ be the Christoffel symbols for the

connection ∇ on L . We define

T γαβ = T (aα, aβ , aγ ) = ρi (aα)Γ
γ

iβ − ρ(aβ)
iΓ γ

iα − cγαβ (3.33)

T αβγ = T (aα, aβ , aγ ) = ρi (aβ)Γ α
iγ − ρi (aα)Γ β

iγ − cαβγ (3.34)

and then we have locally

T =
1
2

T γαβaα ∧ aβ ∧ aγ +
1
2

T αβγ aα ∧ aβ ∧ aγ +
1
6
φαβγ aα ∧ aβ ∧ aγ . (3.35)

From this we immediately obtain the following statement:
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Lemma 3.9. Locally, µ and γ are given by

µ = −piρ
i (aα)a

α
+

1
2

T γαβaα ∧ aβ ∧ aγ (3.36)

γ = −piρ
i (aα)aα +

1
2

T αβγ aα ∧ aβ ∧ aγ . (3.37)

In particular, µ ∈ P(1,2) and γ ∈ P(2,1). In the local super-Darboux coordinates we have

µ = −riρ
i (aα)a

α
−

1
2

cγαβaα ∧ aβ ∧ aγ (3.38)

γ = −riρ
i (aα)aα −

1
2

cαβγ aα ∧ aβ ∧ aγ . (3.39)

Using the splitting in (3.38) and (3.39) we can compare with Roytenberg’s expressions in [29, Eqs. (3.10) and (3.11)].
Note however, that this splitting depends on the choice of coordinates while (3.36) and (3.37) have intrinsic geometric
meanings.

Corollary 3.10. We have {Θ,Θ}R = 0, or equivalently

{µ,µ}R = 0 (3.40)

1
2
{γ, γ }R + {µ, φ}R = 0 (3.41)

{µ, γ }R = 0 (3.42)

{γ, φ}R = 0. (3.43)

Example 3.11. Let E = T M ⊕T ∗M be the standard Courant algebroid over M . Let ∇ be any torsion-free connection
and construct the Rothstein–Poisson bracket on Γ∞(

∧
•
τ # E). First we get

γ = 0, φ = 0, and ψ = 0. (3.44)

For the only nontrivial element µ we find locally µ = −piτ
#dx i

∈ Γ∞(τ #T ∗M). The pulled back bundle
τ #T ∗M can be identified with the annihilator subbundle Ver(T ∗M)ann

⊆ T ∗(T ∗M) of the vertical subbundle
Ver(T ∗M) ⊆ T (T ∗M) in the usual way. This canonical identification allows us to identify τ #dx i with τ ∗dx i

= dq i .
Hence, under this identification, µ coincides with the canonical one-form − θ0 on T ∗M .

We have some more corollaries to Corollary 3.10 and Lemma 3.8. First we note [29]:

Corollary 3.12. On L we have given the structure of a quasi-Lie bialgebroid.

Remark 3.13. If in addition {µ, φ}R = 0 is satisfied then (L , L∗) is a Lie bialgebroid [21]. But only if φ = 0 the
space of sections Γ∞(L∗) is closed under the Courant bracket and L∗ is a Dirac structure.

Given a Dirac structure L in a Courant algebroid E we always can find a maximal isotropic subbundle L ′

complementary to L and identify E with L ⊕ L∗, see e.g. Corollary 4.4. Thus we have [29]:

Corollary 3.14. A Courant algebroid E with a Dirac structure L is isomorphic to the double of the Lie quasi-
bialgebroid L ⊕ L∗.

As shown in Lemma 3.7 the derived bracket [ ·, · ]µ is the Schouten–Nijenhuis bracket for the Lie algebroid
structure on L given by the restriction of the Courant bracket and the anchor to Γ∞(L). Further [ ·, · ]γ defines a
quasi-Lie algebroid structure on L∗ where the bracket is given by

[σ1, σ2]L∗ = [σ1, σ2]γ = prL∗([σ1, σ2]C) (3.45)

and the anchor by ρL∗ = ρ|L∗ . The differential dL is a graded derivation for the bracket [ ·, · ]γ and the differential
dL∗ is a graded derivation for the bracket [ ·, · ]µ .
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4. Smooth and formal deformations of Dirac structures

In this section we shall now establish the smooth and the formal deformation theory of Dirac structures. In the
following E is a Courant algebroid with a fiber metric of signature zero and L ⊆ E a Dirac structure as before.

4.1. Definition of smooth deformations

As motivation we first recall the well-known situation for Poisson manifolds, see e.g. [5, Sect. 18.5]: A smooth
deformation πt of a Poisson structure π0 on M is a smooth map

π : I × M −→

∧2
T M (4.1)

with πt = π(t, · ) ∈ Γ∞(
∧2 T M) for all t ∈ I and π(0, · ) = π0, such that

[πt , πt ] = 0 (4.2)

for all t ∈ I , where I ⊆ R is an open interval around zero. Formal deformations then are given by formal power
series πt = π0 + tπ1 + · · · ∈ Γ∞(

∧2 T M)[[t]] such that [πt , πt ] = 0 order by order in the formal parameter. A
similar approach is possible in the case of symplectic manifolds.

Consider now a Dirac structure L in E . One possibility to define a smooth deformation of L is given by specifying
a family of subbundles in terms of a family of projections. This way, we can encode the desired smoothness easily:

Definition 4.1. Let L ⊆ E be a Dirac structure and let I ⊆ R be an open interval around zero. A smooth deformation
of L = L0 is a family of Dirac structures L t with t ∈ I such that there exists a smooth map

P : I × M −→ End(E) (4.3)

with

(i) P(t,m) : Em −→ Em for all t ∈ I and m ∈ M
(ii) P(t,m)2 = P(t,m) for all t ∈ I and m ∈ M

(iii) Im Pt = L t for all t ∈ I , where Pt = P(t, · ) ∈ Γ∞(End(E)).

Remark 4.2. Consider the pull-back bundle pr# E , where pr : I × M −→ M is the projection. Equivalent to the
definition above we can consider a smooth deformation of L as a smooth subbundle L ⊆ pr# E such that every
L t = L|{t}×M ⊂ E is a Dirac structure where L0 = L .

While the above definition is conceptually clear and easy, it is not very suited for concrete computations. Thus we shall
re-formulate the definition using additional geometric structures in Section 4.3. We also have to discuss the possible
notions of equivalence in detail. However, we first recall two general well-known properties of the subbundles in
question:

Theorem 4.3. Let E be a vector bundle with a fiber metric ( ·, · ). Then there exits a positive definite fiber metric g
and an isometry J : E −→ E of ( ·, · ) with J 2

= id, such that

g(e1, e2) = (e1, Je2) (4.4)

for all e1, e2 ∈ Γ∞(E).

Proof. For the reader’s convenience we sketch the proof: Choose a positive definite fiber metric k and define
A ∈ Γ∞(End(E)) by k(Ae1, e2) = (e1, e2). Since A turns out to be k-symmetric we can use its polar decomposition
A =

√

A2 J . Then g(e1, e2) = (e1, Je2) has the required properties. �

Corollary 4.4. Let E be a vector bundle with even fiber dimension 2k and let ( ·, · ) be a bilinear form on E of
signature zero. Let further L be a maximal isotropic subbundle of E. Choose g and J according to Theorem 4.3.
Then

E = L ⊕ J (L) and L⊥g = J (L) ∼= L∗. (4.5)
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Theorem 4.5. Let E be a vector bundle, I ⊂ R an open interval around zero and let L t for t ∈ I be a smooth family
of subbundles of E. Then there exits a vector bundle automorphism Ut of E over the identity id : M −→ M, smoothly
depending on t ∈ I such that

L t = Ut (L0). (4.6)

If E is a Courant algebroid and L t a family of maximal isotropic subbundles, then we can also achieve that Ut is an
isometry of the symmetric bilinear form h = ( ·, · ) for all t ∈ I .

Proof. The theorem can be proved along the lines of [12, Lem. 1.1.5]. �

4.2. The problem of equivalence

Let L be a Dirac structure in a Courant algebroid E and L t a smooth deformation of L = L0. We know from
Theorem 4.5 that there exists an isometry Ut of E smoothly depending on t such that L t = Ut (L0). Thus, in this
general concept it seems natural to define a trivial deformation as a deformation L t such that we can find a time
dependent Ut which is not only an isometry but also a Courant algebroid automorphism. If we further ask whether
two smooth deformations L t and L ′

t are equivalent, one is tempted to require the existence of a time dependent Courant
algebroid automorphism Ut , such that L ′

t = Ut (L t ).
However, in the case of of the standard Courant algebroid T M ⊕ T ∗M , due to Proposition 2.8, this would mean

that we have the gauge transformations by closed two-forms as equivalence transformations. But then every two Dirac
structures given by presymplectic forms would be equivalent. Hence we see that in the case of T M ⊕ T ∗M we can
not permit every Courant algebroid automorphism as an equivalence transformation as long as we want to reproduce
the common results for the deformation theory of symplectic forms.

In the case of E = T M⊕T ∗M , we know that every automorphism is given by the product of a gauge transformation
and a lifted diffeomorphism Fφ. As we do not want gauge transformations as equivalence transformations we have to
consider the lifted diffeomorphisms. Indeed, given a presymplectic form ω on a manifold M and a diffeomorphism φ

of M , one can easily show [4] that the equation

Bφ(graphω) = graph(φ∗ω) (4.7)

is satisfied. Analogously we have

Bφ(graphπ) = graph(φ∗π) (4.8)

for a Poisson tensor π on M . This motivates the following definition of equivalent deformations of Dirac structures
which reduce to the well-known situation in the Poisson or symplectic case:

Definition 4.6. Let L ⊂ T M⊕T ∗M be a Dirac structure in the standard Courant algebroid. Two smooth deformations
L t and L ′

t of L are called equivalent, if there exists a smooth curve of diffeomorphisms φt of M such that
L ′

t = Fφt (L t ). A smooth deformation is called trivial, if there exists a smooth curve of diffeomorphisms φt such
that L t = Fφt (L0).

While for the standard Courant algebroid this seems to be the reasonable definition of equivalent deformations, in
general it will be more difficult: for any vector bundle E −→ M we have the exact sequence of groups

1 −→ Gau(E) −→ Aut(E) −→ Diffeo(M) −→ 1, (4.9)

where Gau(E) denotes those vector bundle automorphisms of E which induce the identity on M , and the last arrow
assigns to an arbitrary vector bundle automorphism Φ : E −→ E the induced diffeomorphism φ of M . However,
quite unlike for the Courant algebroid T M ⊕ T ∗M , in general this exact sequence does not split. Furthermore, even
if the sequence splits, it is not clear, whether the split can be chosen in a reasonable way. In fact, if E is associated to
the frame-bundle, then one can choose a splitting.

Since it is precisely this canonical splitting in the case of T M ⊕ T ∗M which we use for Definition 4.6 there
seems to be no simple way out. One possibility would be the following: since we are only interested in smooth curves
of diffeomorphisms φt of M with φ0 = idM we know that such a curve is the time evolution of a time-dependent
vector field X t on M . After the choice of a connection ∇ on E we can lift X t horizontally to E and consider its time
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evolution Φt on E . Then we can use Φt instead of Fφt to formulate a definition of equivalence and trivial deformations
analogously to Definition 4.6. However, this would depend explicitly on the choice of a connection. We shall come
back to this problem in a future work. At the present stage, the question of equivalence of smooth deformations of
Dirac structures in a general Courant algebroid has to be left unanswered.

4.3. Rewriting the deformation problem

To study the formal deformation theory of Dirac structures we first have to think about an appropriate description
for such deformations. Given a Courant algebroid E with Dirac structure L we choose an isotropic complement L ′

to L (for example with the help of Corollary 4.4) and identify L ′ with L∗. Then we can write E = L ⊕ L∗, where
the fiber metric on E translates to the natural pairing on L ⊕ L∗. Thus we may assume that E has this form in the
following. Note however, that we still have to discuss the influence of this chosen isomorphism later.

Locally a small deformation L t of L could be understood as the graph of a map ωt : L −→ L∗. Indeed, over a
compact subset K ⊆ M a smooth deformation L t can be written as the graph of some ωt provided t is sufficiently
small. Globally in M , this needs not to be true whence smooth deformation theory becomes highly non-trivial.
However, since we will mainly be interested in formal deformations (to be thought of as formal Taylor expansions of
smooth deformations) the idea of looking at graphs will be sufficient for us. The claim that L t is isotropic allows us
to identify ωt with a 2-form in L . To ensure that Γ∞(L t ) is closed under the Courant bracket and therefore is a Dirac
structure leads to an additional requirement for ωt .

In the following considerations we will first omit the dependency on t . So let ω ∈ Ω2(L) be a 2-form. Then
graph(ω) is integrable, i.e. closed under the Courant bracket, if and only if for all s1, s2, s3 ∈ Γ∞(L)

0 = 〈[s1 + ω(s1), s2 + ω(s2)]C, s3 + ω(s3)〉

= 〈[s1, ω(s2)]C, s3〉 + 〈[ω(s1), s2]C, s3〉 + 〈[s1, s2]C, ω(s3)〉

+ 〈[s1, ω(s2)]C, ω(s3)〉 + 〈[ω(s1), s2]C, ω(s3)〉 + 〈[ω(s1), ω(s2)]C, s3〉

+ 〈[ω(s1), ω(s2)]C, ω(s3)〉. (4.10)

The constant term in ω vanishes as L is assumed to be a Dirac structure throughout. Moreover, this equation combines
linear, quadratic and cubic terms in ω. In order to analyze this equation in more detail, we use the Rothstein–Poisson
bracket.

Lemma 4.7. Let E = L ⊕ L∗ be a Courant algebroid with L a Dirac structure and let ω ∈ Γ∞(
∧2 L∗) be a 2-form.

Then graph(ω) ⊆ E is a Dirac structure if and only if

{µ,ω}R +
1
2
{{ω, γ }R , ω}R +

1
6
{{{φ, ω}R , ω}R , ω}R = 0. (4.11)

Proof. Replacing all Courant brackets by the derived bracket using Θ gives (4.11) after a straightforward
computation. �

Due to the bigrading properties of the Rothstein–Poisson bracket the definition

[η1, η2, η3]φ = {{{φ, η1}R , η2}R , η3}R (4.12)

gives a well-defined trilinear map

Γ∞

(∧k
L∗

)
× Γ∞

(∧l
L∗

)
× Γ∞

(∧m
L∗

)
−→ Γ∞

(∧k+l+m−3
L∗

)
. (4.13)

Moreover, because φ is a pull-back section this map is independent of the connection used for constructing the
Rothstein–Poisson bracket. With the definitions from Lemma 3.7 we can write (4.11) equivalently as

dLω +
1
2
[ω,ω]γ +

1
6
[ω,ω,ω]φ = 0. (4.14)
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This is the fundamental equation for ω which has been derived by Roytenberg in his approach in another context, see
[31].

Eq. (4.14) is precisely the sorting of (4.10) by the homogeneous monomials in ω and hence independent of the
usage of the Rothstein–Poisson bracket. Nevertheless, we can use the Rothstein–Poisson bracket to obtain algebraic
identities for the three parts of (4.14) which are very hard to obtain without the Rothstein–Poisson bracket.

4.4. Formal deformations

Following the general idea of formal deformation theory, namely to solve a non-linear algebraic equation order by
order in terms of formal power series [13,14], we consider solutions of (4.10) in the sense of formal power series.
Since ω should be a ‘small’ deformation we make the Ansatz

ω = tω1 + t2ω2 + · · · =

∞∑
t=1

trωr ∈ tΓ∞

(∧2
L∗

)
[[t]], (4.15)

where ω1, ω2, . . . have to be determined recursively. Since ωr ∈ Γ∞(
∧2 L∗), we can interpret the deformation as a

2-cochain in the Lie algebroid complex of L , viewed only as a Lie algebroid. The following lemma is now crucial for
the cohomological approach:

Lemma 4.8. Let η ∈ Γ∞(Λ2L∗) be a two-form. Then

dη = {µ, · }R + {{η, γ }R , ·}R +
1
2
{{{φ, η}R , η}R , ·}R = dL + [η, ·]γ +

1
2
[η, η, ·]φ (4.16)

defines a graded derivation of degree one of the ∧-product such that

dη

(
dLη +

1
2
[η, η]γ +

1
6
[η, η, η]φ

)
= 0. (4.17)

Proof. Using the derived bracket formalism this is a straightforward computation. �

The following theorem shows that the solvability of (4.10) or equivalently (4.14) order by order in the formal
parameter leads to a cohomological obstruction in the usual way:

Theorem 4.9. Let E = L ⊕ L∗ be a Courant algebroid with a Dirac structure L and let ωt = tω1 + t2ω2 + · · · +

t NωN ∈ Γ∞(
∧2 L∗)[[t]] be a formal deformation of L of order N, i.e. the equation

dLωt +
1
2
[ωt , ωt ]γ +

1
6
[ωt , ωt , ωt ]φ = 0 (4.18)

is satisfied up to order N. Then

RN+1 = −
1
2

N∑
i=1

[ωi , ωN+1−i ]γ −
1
6

∑
i+ j+k=N+1

[ωi , ω j , ωk]φ ∈ Γ∞

(∧3
L∗

)
(4.19)

is closed with respect to dL , and ωt can be extended to a deformation of order N + 1 if and only if RN+1 is exact.

Proof. The proof is essentially the usual argument of formal deformation theory. LetωN+1 ∈ Γ∞(
∧2 L∗) be arbitrary

and set ω′
t = ωt + t N+1ωN+1. Then

dLω
′
t +

1
2
[ω′

t , ω
′
t ]γ +

1
6
[ω′

t , ω
′
t , ω

′
t ]φ

= t N+1

(
dLωN+1 +

1
2

N∑
i=1

[ωi , ωN+1−i ]γ +
1
6

∑
i+ j+k=N+1

[ωi , ω j , ωk]φ

)
+ o(t N+2),
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whence ω′
t satisfies (4.14) up to order N + 1 if and only if dLωN+1 = RN+1, i.e. RN+1 is exact with respect to dL .

On the other hand, RN+1 is always closed. Indeed, by Lemma 4.8 applied to ω′
t we get

0 = t N+1dL

(
1
2

l∑
i=1

[ωi , ωN+1−i ]γ +
1
6

∑
i+ j+k=N+1

[ωi , ω j , ωk]φ

)
+ o(t N+2),

which implies dL RN+1 = 0. �

Remark 4.10. From the proof it is clear that the whole derived bracket formalism enters only in showing that RN+1
is dL -closed. This is in some sense the nontrivial statement of the theorem. In principle, this can also be shown
directly using only (4.10) and the algebraic identities for the Courant bracket. However, the computations are very
much involved without using the nice derived bracket formalism. Nevertheless, it should be emphasized that the
characterization of the order-by-order obstruction to solve (4.10) by the third Lie algebroid cohomology of the Dirac
structure is independent of the choices we made in order to obtain the Rothstein–Poisson bracket.

4.5. Examples: Presymplectic and Poisson manifolds

Let us now discuss some examples in order to show that the deformation theory of Dirac structures generalizes the
well-known deformation theories of presymplectic and Poisson structures.

Let (M, ω) be a presymplectic manifold, and consider the standard Courant algebroid T M ⊕ T ∗M with the Dirac
structure L = graph(ω). In this case T ∗M is a complement of L and we can identify L∗ ∼= T ∗M . There is also
a canonical identification of L with T M , which is given by the restriction of the gauge transformation τ−ω to L .
Because ω is closed, τ−ω is a Courant algebroid automorphism and we have the identification L ⊕ L∗ ∼= T M ⊕ T ∗M ,
where the Courant algebroid structure on the right hand side is still the standard one. Because L∗ ∼= T ∗M is a Dirac
structure with trivial Lie algebroid structure, according to our theory a smooth deformation of L ∼= T M is given by
a closed time-dependent two-form ηt with η0 = 0. The deformation of the original Dirac structure is then given by
L t = graph(ω+ ηt ), i.e. by the deformation of the presymplectic form ω. Thus we retrieve the common results in this
case.

Usually in formal deformation theory, the infinitesimally inequivalent deformations are parameterized by a second
cohomology relevant for the deformation problem while the third cohomology gives the obstructions for the existence
of order-by-order deformations. In our case, one would expect the second Lie algebroid cohomology to be the relevant
one.

For the usual deformation theory of symplectic forms or Poisson bivectors this is indeed the case. However, in the
general case, the situation is more subtle. To see this, we consider the following example:

First recall that the Lie algebroid cohomology of a Dirac structure coming from a presymplectic structure
coincides with the de Rham cohomology. Then, for a presymplectic manifold, two formal deformations ωt and
ω′

t of the presymplectic form ω0 are equivalent iff there exists a formal diffeomorphism φt = exp(LX t ) with
X t = t X1 + · · · ∈ tΓ∞(T M)[[t]], such that φtωt = ω′

t . This is the reasonable definition of ‘deformations up to
formal diffeomorphisms’. In first order this equation reads as

ω′

1 − ω1 = LX1ω0 = diX1ω0. (4.20)

If there is a α ∈ Ω1(M), such that dα = ω′

1 − ω1, then we must find X1 with iX1ω0 = α. For a symplectic form
ω0 this is always possible, so nontrivial deformations only exist if H2

dR(M) is nontrivial. However, if we start with a
presymplectic form ω0, there might be no X1 such that iX1ω0 = α and the triviality of H2

dR(M) is not sufficient for the
rigidity of M as a presymplectic manifold. Because the presymplectic deformation is a special case of the deformation
of Dirac structures, the obstructions for the existence of non-trivial deformations are not in the second Lie algebroid
cohomology of L . This is probably the most surprising feature of the deformation theory of Dirac structures.

Remark 4.11. One might wonder whether this is just an artifact of our notion of equivalence based on formal
diffeomorphisms. However, if one decides to use the notion of equivalence suggested by Theorem 4.5 (which we
do not prefer, see the discussion in Section 4.2), then the situation is even worse: All deformations of presymplectic
forms in this sense become equivalent, while the second Lie algebroid cohomology might be nontrivial.



F. Keller, S. Waldmann / Journal of Geometry and Physics 57 (2007) 1015–1036 1031

Finally, let us consider a Poisson manifold (M, π), and consider the Dirac structure L = graph(π) in the standard
Courant algebroid T M ⊕ T ∗M . We choose T M as complement to L so that we can identify L∗ with T M . Observe
that in this case L∗ ∼= T M is again a Dirac structure but unlike as above the Lie algebroid structure on L∗ is non-
trivial. We further identify L with T ∗M via ρ∗|L . Hence, we have the identification L ⊕ L∗

= T ∗M ⊕ T M , but
the Courant algebroid structure on the right hand side now is not the standard one. The differential dL becomes the
differential given by π , i.e. dπ = [π, · ], and the bracket on L∗ ∼= T M is the canonical Schouten–Nijenhuis bracket.
Deformations of L are given by time-dependent bivector fields λt such that

dπλt +
1
2
[λt , λt ] = 0. (4.21)

Thanks to [π, π] = 0, this equation is equivalent to

[π + λt , π + λt ] = 0. (4.22)

We conclude that deformations πt = π+λt of the Poisson tensor π are the same as deformations of the corresponding
Dirac structure L .
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Ševera, Jim Stasheff and Alan Weinstein for valuable remarks and suggestions on the first version.

Appendix A. The Rothstein–Poisson bracket

A.1. Definition of the Rothstein–Poisson bracket

Let F −→ N be a vector bundle over a symplectic manifold (N , ω) and let π = −ω−1 be the Poisson tensor for
the induced Poisson bracket on N , i.e. { f, g} = π(d f, dg). Further let h be a pseudo-riemannian metric on N and ∇

a metric connection. We denote local coordinates on N by x1, . . . , xn , local basis sections of F by s1, . . . , sk and the
dual sections of F∗ by s1, . . . , sk . With the local expression

R̂ =
1
2
π i j h AB RC

Ajk∂i ⊗ sB ∧ sC ⊗ dxk (A.1)

we get a well defined global section R̂ ∈ Γ∞(T N ⊗
∧2 F ⊗ T ∗N ), where h AB and R A

Bi j are the local expressions

for the pseudo-riemannian metric h−1 and the curvature R in coordinates. A section S ∈ Γ∞(T N ⊗
∧k F ⊗ T ∗N )

can be interpreted as a map

S : Γ∞

(
T N ⊗

∧
•

F
)

−→ Γ∞

(
T N ⊗

∧
•+k

F
)

(A.2)

by

(X ⊗ φ ⊗ η)(Y ⊗ ψ) = η(Y )X ⊗ φ ∧ ψ. (A.3)

We therefore can form powers of R̂ by composition of maps. Because R̂ increases the degree of the part in
∧

• F by
two, R̂ is nilpotent and we have a well-defined section

(id − R̂)−
1
2 = id +

1
2

R̂ +
3
8

R̂2
+ · · · , (A.4)

where id = ∂i ⊗ 1 ⊗ dx i is the identity map in Γ∞(T N ⊗
∧

• F). For a section S ∈ Γ∞(T N ⊗
∧

• F ⊗ T ∗N ) we
define the local section Si

j of
∧

• F by

S = ∂i ⊗ Si
j ⊗ dx j . (A.5)
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In the following we denote by i(σ )ψ and j (σ )ψ the interior product of a section σ ∈ Γ∞(F∗) with an element
ψ ∈ Γ∞(

∧
• F) from the left and right, respectively.

Theorem A.1 (Rothstein–Poisson Bracket [3,28]). Given a vector bundle F together with ∇, h and ω as above we
have a super-Poisson bracket { ·, · }R on Γ∞

(∧
• F
)
, called the Rothstein–Poisson bracket, which is locally given by

{φ,ψ}R = π i j
(
(1 − R̂)−

1
2

)k

i
∧

(
(1 − R̂)−

1
2

)l

j
∧ ∇∂kφ ∧ ∇∂lψ + h AB j (s A)φ ∧ i(s B)ψ. (A.6)

That { ·, · }R is a super-Poisson bracket means that for all φ ∈ Γ∞(
∧k F), ψ ∈ Γ∞(

∧l F) and η ∈ Γ∞(
∧

• F) we
have

(i) {φ,ψ}R = −(−1)kl
{ψ, φ}R

(ii) {φ,ψ ∧ η}R = {φ,ψ}R ∧ η + (−1)klψ ∧ {φ, η}R
(iii) {φ, {ψ, η}R}R = {{φ,ψ}R , η}R + (−1)kl

{ψ, {φ, η}R}R .

A.2. The Rothstein bracket for pullback bundles

Let πM : E −→ M be a vector bundle, N a manifold and let f : N −→ M be a smooth map. We denote
by f #πM : f # E −→ N the pullback bundle with respect to f . Given a section e ∈ Γ∞(E) the pullback section
f #e ∈ Γ∞( f # E) is then defined by

f #e = e ◦ f. (A.7)

A local basis u1, . . . , uK ∈ Γ∞( E |U ) of E defined on some open set U ⊆ M leads to a local basis f #u1, . . . , f #uK
of f # E defined on f −1(U ) ⊆ N . Given a connection ∇ on E we have the induced connection f #

∇ on f # E , where
for pullback sections f #e with e ∈ Γ∞(E) we have for Y ∈ Γ∞(T N )

f #
∇Y ( f #e) = f #(∇T f (Y )e). (A.8)

In the following we will look at the case N = T ∗M with f = τ : T ∗M −→ M the cotangent projection. Let
x1, . . . , xn be coordinates on U ⊆ M and q1, . . . , qn, p1, . . . , pn the induced bundle coordinates on T ∗U . The sign
of the canonical Poisson bracket on T ∗M is choosen such that {q i , p j } = δi

j . Observe that for pullback sections

τ #u ∈ τ #(Γ∞(E)) we have

(τ #
∇) ∂

∂qi
τ #u = τ #(∇ ∂

∂xi
u) and (τ #

∇) ∂
∂pi
τ #u = 0. (A.9)

In particular, for a general section s ∈ Γ∞(τ # E) the expression (τ #
∇) ∂

∂pi
s is independent of the connection ∇ and

therefore we set

∂s

∂pi
= (τ #

∇) ∂
∂pi

s (A.10)

for the covariant derivative of s with respect to ∂
∂pi

.

Lemma A.2. Let π : E −→ M be a vector bundle with connection ∇
E and a fiber metric h. Look at the pullback

bundle F = τ # E over the symplectic manifold T ∗M together with the pullback connection ∇
F

= τ #
∇

E and the
pullback metric τ ∗h. Then the map R̂F as defined in (A.1) satisfies

R̂F
(
∂

∂q i ⊗ ψ

)
=

1
2
∂

∂p j
⊗ τ #

(
h AB

(
RE
)C

Ai j
u B ∧ uC

)
∧ ψ

R̂F
(
∂

∂pi
⊗ ψ

)
= 0,

where (RE )
B
Ai j is the curvature of ∇

E with respect to the appropriate coordinates.
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Proof. This is a straightforward computation. �

With this lemma it follows immediately that (R̂F )k = 0 for k ≥ 2 and therefore

(id − R̂F )−
1
2 = id +

1
2

R̂F . (A.11)

Hence in this case we get a more explicit formula for the Rothstein–Poisson bracket.

Lemma A.3. With the above definitions the Rothstein–Poisson bracket on Γ∞(τ #(
∧

• E)) is given by

{φ,ψ}R = ∇
F
∂

∂qi
φ ∧

∂

∂pi
ψ −

∂

∂pi
φ ∧ ∇

F
∂

∂qi
ψ −

1
2
τ #
(

h AB
(

RE
)C

Ai j
u B ∧ uC

)
∧

∂

∂pi
φ ∧

∂

∂p j
ψ

+ τ ∗h AB j (τ #u A)φ ∧ i(τ #u B)ψ. (A.12)

A.3. Super-Darboux coordinates

Let us choose a local basis of sections s1, . . . , sk of the bundle E such that the functions h AB = h(sA, sB) are
constant. If we calculate the Rothstein–Poisson bracket for the coordinate functions q i , p j and the local sections
τ #u A of τ # E we get the equations

{q i , q j
}R = 0 {q i , p j }R = δi

j

{pi , p j }R = −
1
2
τ #
(

h AB
(

RE
)C

Ai j
u B ∧ uC

)
and {q i , τ #u A}R = 0

{pi , τ
#u A}R = −τ #

(
Γ B

i Au B

)
and {τ #u A, τ

#u B}R = τ ∗h AB .

(A.13)

We see that C∞(T ∗M) is in general not closed under the Rothstein–Poisson bracket.

Proposition A.4. Let the local sections ri of the bundle Γ∞
(∧

•
(τ # E)

)
be defined by

ri = pi −
1
2
τ #
(

h AB ΓC
i A u B ∧ uC

)
. (A.14)

Then the following equations are satisfied:

{q i , r j }R = δi
j and {τ #u A, τ

#u B}R = h AB, (A.15)

and

{q i , q j
}R = {q i , τ #u A}R = {ri , r j }R = {ri , τ

#u A}R = 0. (A.16)

Proof. A direct calculation using the fact that the connection is metric leads to the result. �

A.4. Grading for polynomial sections

Let P ⊂ Γ∞
(∧

•
(τ # E)

)
be the sections which are polynomial in the momenta, i.e. sections which locally can be

written as a linear combination of local sections of the form

h A1...As τ #u A1 ∧ · · · ∧ τ #u As (A.17)

for 0 ≤ s ≤ k with h A1...As ∈ P•(T ∗M) polynomial functions on T ∗M . From (A.12) we get the following:

Lemma A.5. The space P is closed under the Rothstein–Poisson bracket.
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Definition A.6. Let the map deg : P −→ P be defined by the local formula

deg = 2pi
∂

∂pi
+ τ #u A ∧ i(τ #u A). (A.18)

For an element φ ∈ P we say that φ is of degree r if the equation degφ = rφ is satisfied. We denote the set of all such
elements by Pr .

Remark A.7. (i) Elements with degree zero can be identified with functions on M and elements with degree one
with sections in E , i.e.

P0
= τ ∗(C∞(M)) and P1

= τ #(Γ∞(E)). (A.19)

(ii) The degree given by deg can be used to calculate the signs for the super-Poisson structure given by the Rothstein
bracket because the momenta always count twice.

Lemma A.8. The Rothstein–Poisson bracket is of degree −2 for the grading given by deg.

A.5. The case E = L ⊕ L∗

Let L −→ M be a vector bundle with a connection ∇. We also have a connection on the dual bundle L∗ and
therefore a connection ∇

E on E = L ⊕ L∗, which is metric with respect to the canonical bilinear form on L ⊕ L∗,
given by

〈(s1, α1), (s2, α2)〉 = α1(s2)+ α2(s1) (A.20)

for s1, s2 ∈ Γ∞(L) and α1, α2 ∈ Γ∞(L∗).
Let x1, . . . , xn be coordinates on M , a1, . . . , ak be a local basis of L and a1, . . . , ak be the dual basis of L∗. Let

Rβαi j be the curvature on L in coordinates. The curvature on L∗ then is given in the dual coordinates by −Rβαi j . If we
choose

(u1, . . . , u A, . . . , u2k) = (a1, . . . , ak, a1, . . . , ak) (A.21)

as a local basis of L ⊕ L∗ we get for the curvature on E = L ⊕ L∗

(
RE
)B

Ai j
=


RB

Ai j for 1 ≤ A, B ≤ k
−R A−k

B−k,i j for k + 1 ≤ A, B ≤ 2k
0 otherwise.

(A.22)

Now let F = τ #(L ⊕ L∗) −→ T ∗M again be the pullback bundle. Because of the special form of the curvature and
the fiber metric in the given coordinates, we can simplify the formula for the Rothstein–Poisson bracket and get the
following lemma.

Lemma A.9 (Eilks [11]). The Rothstein–Poisson bracket on Γ∞
(∧

•
τ #(L ⊕ L∗)

)
is locally given by

{φ,ψ}R = ∇ ∂

∂qi
φ ∧

∂

∂pi
ψ −

∂

∂pi
φ ∧ ∇ ∂

∂qi
ψ + τ #

(
Rαβi j aα ∧ aβ

)
∧

∂

∂pi
φ ∧

∂

∂p j
ψ

+ j (τ #aα)φ ∧ i(τ #aα)ψ + j (τ #aα)φ ∧ i(τ #aα)ψ, (A.23)

where ψ , φ ∈ Γ∞
(∧

•
τ #(L ⊕ L∗)

)
and τ #aα and τ #aα are pullback basis sections.

From this formula we easily get the following lemma.

Lemma A.10. For sections s ∈ Γ∞(L), σ ∈ Γ∞(L∗), P ∈ Γ∞(
∧r L) and η ∈ Γ∞(

∧s L∗) we have the equations

{τ #s, τ #η}R = τ #(isη) (A.24)

{τ #σ, τ # P}R = τ #(iσ P) (A.25)
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and

{τ #s, τ # P}R = 0 = {τ #σ, τ #η}R . (A.26)

In particular, we get

{τ #e1, τ
#e2}R = τ ∗

〈e1, e2〉 (A.27)

for all e1, e2 ∈ Γ∞(L ⊕ L∗).

In this situation, the super-Darboux coordinates are given as follows:

Proposition A.11. If we set

ri = pi − τ #
(
Γ β

iα aα ∧ aβ
)
, (A.28)

the only non-trivial Rothstein–Poisson brackets between the q i , r j , τ #aα and τ #aβ are

{q i , r j }R = δi
j and {τ #aα, τ #aβ}R = δαβ . (A.29)

The grading with respect to the total degree can be refined in the following sense:

Definition A.12. Let degL and degL∗ be defined by the local formula

degL = pi
∂

∂pi
+ τ #aα ∧ i(τ #aα) and degL∗ = pi

∂

∂pi
+ τ #aα ∧ i(τ #aα). (A.30)

For an element ψ ∈ P we say ψ has bidegree (r, s), if degL ψ = rψ and degL∗ ψ = sψ . The set of all such elements
will be denoted by P(r,s).

Of course we have deg = degL + degL∗ , and therefore we call deg the total degree. Moreover we have P(0,0) =

τ ∗(C∞(M)), P(r,0) = τ #(
∧r L) and P(0,s) = τ #(

∧s L∗).

Lemma A.13. The Rothstein–Poisson bracket restricted to the polynomial sections P is of bidegree (−1,−1), i.e. for
all φ ∈ P(r,s), ψ ∈ P(t,u) we have {φ,ψ}R ∈ P(r+t−1,s+u−1).
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Deformations, and Symmetries, in: Mathematical Physics Studies, no. 21, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000,
pp. 217–254.

http://arxiv.org//arxiv:q-alg/9605038
http://arxiv.org//arxiv:math.DG/0403434
http://arxiv.org//arxiv:math.DG/0401221


1036 F. Keller, S. Waldmann / Journal of Geometry and Physics 57 (2007) 1015–1036

[17] F. Keller, Deformation von Lie-Algebroiden und Dirac-Strukturen, Master Thesis, Fakultät für Mathematik und Physik, Physikalisches
Institut, Albert-Ludwigs-Universität, Freiburg, 2004.

[18] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003) 157–216.
[19] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (5) (1996) 1243–1274.
[20] Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004) 61–87.
[21] Y. Kosmann-Schwarzbach, Quasi, twisted, and all that . . . in Poisson geometry and Lie algebroid theory, in: J.E. Marsden, T.S. Ratiu (Eds.),

The Breadth of Symplectic and Poisson Geometry, in: Progress in Mathematics, vol. 232, Birkhäuser Boston Inc., Boston, MA, 2005,
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